Probing dark matter through dark forces

Adam Ritz
University of Victoria

With B. Batell, M. Pospelov and M. Voloshin 0711.4866, 0810.1502, 0903.0363, 0903.3396, 0906.5614

WIMP dark matter

What do(nt) we know in terms of non-gravitational interactions?

Assuming a thermal relic [following BBN]

$$\rightarrow \langle \sigma_{ann} v \rangle_{f.o.} \simeq 1 \ pbn$$

Upper bounds on other interaction rates

$$\langle \sigma_{scat} v \rangle_{dec}$$
 $\langle \sigma_{ann} v \rangle_{gal}$ $\langle \sigma_{scat} v \rangle_{N}$

Phase Indirect Direct detection

- Strongest usually on nuclear elastic scattering
 - \rightarrow $\langle \sigma_{elas} v \rangle_{\rm nuc} < 1 \ \rm pbn$ (if in sensitivity range)
 - \rightarrow if coherent $\sigma_N < 10^{-7} \text{ pbn}$

Observational "Hints"

If any of these effects were to be due to dark matter, we need (some combination of):

- Large galactic annihilation cross-section
- A significant branching to leptons
- More complex nuclear scattering

i.e. a non-standard WIMP candidate

If any of these effects were to be due to dark matter, we need (some combination of):

- Large galactic annihilation cross-section
- A significant branching to leptons
- More complex nuclear scattering

i.e. a non-standard WIMP candidate

If any of these effects were to be due to dark matter, we need (some combination of):

- Large galactic annihilation cross-section
- A significant branching to leptons
- More complex nuclear scattering

i.e. a non-standard WIMP candidate

If any of these effects were to be due to dark matter, we need (some combination of):

- Large galactic annihilation cross-section
- A significant branching to leptons
- More complex nuclear scattering

i.e. a non-standard WIMP candidate

→ sufficient motivation (for this talk!) to explore dark matter as part of a larger (multi-component, interacting) dark sector [cf. Arkani-Hamed et al '08, ...]

Q: Does this more general framework point to new observational probes?

New physics in a hidden sector

Empirical evidence for new physics does not always point to the EW scale and above, but rather to a hidden sector

New physics in a hidden sector

Empirical evidence for new physics does not always point to the EW scale and above, but rather to a hidden sector

Hidden sector may contain "light" states, if neutral under SM gauge group

Allowing dark matter to annihilate into the hidden sector is a simple means of decoupling σ_{ann} and σ_{scat}

- the products of annihilation can mediate very weak interactions with the SM, as they may be long-lived (τ~1s)
- when light, this also allows for possible enhancement/suppression, relevant for existing (astrophys) anomalies: DAMA, PAMELA, etc.

Probing a hidden (dark) sector

Standard Model

Hidden Sector

$$\mathcal{L}_{med} = \sum_{n,k,l}^{n=k+l-4} rac{O_k^{(SM)} O_l^{(med)}}{\Lambda^n}$$

Generic interactions are irrelevant (dimension > 4), but there are three renormalizable "portals"

- Vector portal: $\mathcal{L} = -\frac{\kappa}{2} V^{\mu\nu} B_{\mu\nu}$
- Higgs portal: $\mathcal{L} = (-\lambda S^2 + \xi S)H^{\dagger}H$
- Neutrino portal: $\mathcal{L} = -y_{ij}\bar{L}_iHN_j$

Probing a hidden (dark) sector

Standard Model

09/10/09

Hidden Sector

11

$$\mathcal{L}_{med} = \sum_{n,k,l}^{n=k+l-4} rac{O_k^{(SM)} O_l^{(med)}}{\Lambda^n}$$

Generic interactions are irrelevant (dimension > 4), but there are three renormalizable "portals"

- Vector portal: $\mathcal{L} = -\frac{\kappa}{2} V^{\mu\nu} B_{\mu\nu}$
- Higgs portal: $\mathcal{L} = (-\lambda S^2 + \xi S)H^{\dagger}H$
- Neutrino portal: $\mathcal{L} = -y_{ij}\bar{L}_iHN_j$

NB: The vector mediator V can naturally be light (M << M_Z) implying a new (dark) force

A secluded U(1)

Its straightforward to write down a simple realization of the vector portal

$$\mathcal{L} = -rac{1}{4}V_{\mu
u}^2 - rac{\kappa}{2}V_{\mu
u}F^{\mu
u} + |D_{\mu} \phi|^2 - V(\phi)$$
 [Holdom '86]

 Weak-scale states charged under U(1)_S are WIMP dark matter candidates [Pospelov, AR, Voloshin '07; Hooper & Zurek '08; Arkani-Hamed et al '08; Pospelov, AR '08; Batell, Pospelov, AR '09]

$$\Rightarrow \alpha' \simeq 10^{-2} \times \left(\frac{m_{\chi}}{270 \,\text{GeV}}\right)$$

- If kinetic mixing arises from integrating out heavy charged states at 1-loop $\Rightarrow \kappa \sim 10^{-3}$, SUSY D-terms then imply m_V \sim O(GeV) [Arkani-Hamed & Weiner '08, Baumgart et al '09; Cheung et al '09; Katz & Sundrum '09]
- We will take the secluded U(1) coupling $\alpha' = \alpha$, so the parameter space = $\{m_V, m_{h'}, \kappa\}$

Multi-component WIMP states

- Enhanced annihilation (e.g. Sommerfeld enhancement) generally requires multi-component (e.g. Dirac) WIMP states.
- However, direct detection limits point to singlets, without any (axial-)vector couplnigs, so consider a generic case...

This substructure (or a form-factor) also leads to more complex nuclear scattering (cf. DAMA etc).

DM Annihilation

Relativistic annihilation at freeze-out

Kinetic mixing with γ ,Z \Rightarrow

- \bullet V decays (mainly) to 2 leptons if m_V < 600 MeV
- V decays (mainly) hadronically if heavier
- Decays to photons are soft, since no 2γ decay

Non-relativistic annihilation in the galaxy

Enhanced if V is light:
$$\frac{\langle \sigma v \rangle_{\text{halo}}}{\langle \sigma v \rangle_{\text{f.o.}}} \sim \left\langle \frac{\pi \alpha'}{v} \right\rangle \leq \mathcal{O}\left(\frac{\alpha' m_{\chi}}{m_{V}}\right)$$

Outline

Given parameters which enhance annihilation in the galaxy, what are the implications for direct detection?

- Implications for nuclear scattering
 - endothermic and exothermic scattering
- Probing dark forces directly
 - fixed targets, neutrino beams & B-factories

1. Direct detection

Nuclear scattering

elastic scattering: (a)

- $\chi_{(1,2)}N \to \chi_{(1,2)}N.$
- endothermic scattering $(Q = -\Delta m)$: $\chi_1 N \to \chi_2 N$. (b)

- exothermic scattering $(Q = \Delta m)$:
- $\chi_2 N \to \chi_1 N$.

[as in `inelastic dark matter' Tucker-Smith & Weiner '01]

[also: Han & Hempfling '97; Hall, Moroi, Murayama '97]

Endothermic inelastic scattering

scattering not possible for $\Delta m > 190 \text{ keV}$ at CDMS

2nd-order Elastic scattering

2nd-order Elastic scattering

Relic χ_2 & exothermic scattering

• After decoupling and freeze-out of interconversion:

$$\left[\frac{n_2}{n_1}\right]_{\min} \simeq 10^{-2} \times \left(\frac{m_{\chi}}{300 \,\mathrm{GeV}}\right)^{5/2} \left(\frac{10 \,\mathrm{MeV}}{T_{\mathrm{D}}}\right)^{1/2}$$

[further upscattering in the galaxy, but generally subdominant, as in XDM Finkbeiner, Weiner '07; Pospelov, AR '07]

• Decays are highly suppressed (for $\Delta m < 2m_e$):

$$\Gamma_{\chi_2 \to \chi_1 + 3\gamma} \gg \frac{1}{\tau_U}, \qquad \Gamma_{\chi_2 \to \chi_1 \nu \bar{\nu}} \gg \frac{1}{\tau_U}$$

→ Exothermic down-scattering is a possible direct detection signature!

[see also Finkbeiner, Slatyer, Weiner and Yavin '09]

Exothermic scattering

Summary (part 1)

A multi-component dark matter sector, with near-degeneracies, can significantly modify the signatures for direct detection:

- endothermic and exothermic nuclear scattering is possible
- exothermic scattering of metastable states leads to a rather generic constraint on multi-component WIMP sectors
- significant element-dependence (generic for inelastic DM)

2. Direct probes of dark forces

Probing a secluded U(1) directly

We can also consider experimental probes of the vector portal directly, independent of dark matter

$$\mathcal{L} = -\frac{1}{4}V_{\mu\nu}^2 - \frac{\kappa}{2}V_{\mu\nu}F^{\mu\nu} + |D_{\mu}\phi|^2 - V(\phi)$$

$$\downarrow \downarrow$$

$$\mathcal{L}_{int} = -\kappa eV_{\mu}J_{em}^{\mu} + \frac{m_V^2}{v'}h'V_{\mu}V^{\mu}$$

V - production through mixing with EM current: $O(\kappa^2)$

h' - production through higgs'strahlung: $O(\kappa^2)$

Vector decays

Parametrically: $\Gamma_V(V o 2l) \sim \mathcal{O}(\kappa^2)$

Higgs' decays

When the higgs' is light $(m_{h'} < m_{V})$, it is parametrically long-lived:

$$\Gamma_{h'}(h' \to 2l) \sim \mathcal{O}(\kappa^4)$$
 For $\kappa < 10^{-2}$, this can be $> 10^6$ m

Luminosity matters!

- Fixed targets (proton & electron beams dumps)
 - up to 10²³ POT for modern neutrino sources
 - sensitive to long-lived states
- Medium energy colliders (BaBar, Belle, KLOE,...)
 - large datasets ~ O(1500) fb⁻¹
 - √s ~ 10 GeV
- Rare decays
 - high statistics e.g. for kaon decays

28

In pictorial form

In pictorial form

Fixed target probes - Neutrino Beams

Neutrino Beams

V sensitivity: $\Gamma_V \sim \mathcal{O}(100m) \Longrightarrow \kappa \sim 10^{-6} - 10^{-7}$

h' sensitivity: $\Gamma_{h'} \sim \mathcal{O}(100m) \Longrightarrow \kappa \sim 10^{-2} - 10^{-3}$

Sensitivity to Vectors

LSND: Distance to detector = 30m, 10²³ protons on target!

Sensitivity to Higgs'

From LSND, MiniBooNE, NuMI/MINOS, ...

In pictorial form

In pictorial form

Collider probes - B-factories

Simplest (and perhaps most generic) process is e⁺e⁻→Vγ with V→leptons [Borodatchenkova et al. 'e

[Borodatchenkova et al. '05] [see also: Essig et al. '09; Reece & Wang '09]

However, there is always a background process with γ^* , which means hunting for a bump in dilepton mass

[analyses from BaBar, and future work from Belle, BES-III]

NB: primarily continuum V-production, Y(nS)'s give a small correction

Collider probes - B-factories

[see also: Essig et al. '09; Reece & Wang '09]

In pictorial form

In pictorial form

Other direct signatures

Subject of recent activity

www-conf.slac.stanford.edu/darkforces2009

 A more complex nonabelian hidden sector allows for other signatures at ee-colliders [Essig et al. '09]

[Very recent null search at BaBar for e⁺e⁻ → W_DW'_D → 4l]

 Can also explore rare meson decays (BaBar/Belle, KLOE, KTeV, ...)

$${\rm Br}_{K_L \to \mu^+ \mu^- \gamma} \simeq 3.6 \times 10^{-7}$$

- Interesting signatures (lepton jets) at high energy hadron colliders (SUSY missing energy "comes back" as a lepton jet!) [Arkani-Hamed & Weiner '08, Baumgart et al. '09]
- Proposals for new analyses at B, D, K factories, and new fixed target experiments below hadron threshold

Summary (part 2)

- A neutral hidden sector is an intriguing possibility, motivated by dark matter, RH neutrinos, SUSY breaking, ...
- Light degrees of freedom may interact with the SM at the renormalizable level via the vector, Higgs, and neutrino portals
- Sensitivity to these portals lies at the luminosity frontier, e.g. medium energy e⁺e⁻ machines (B-factories), rare decays, fixed targets, ...
- Significant sensitivity to a secluded U(1) from neutrino sources: LSND, MiniBooNE, NuMI/MINOS, T2K, NOvA, MicroBooNE, Project X,

Summary (part 2)

- A neutral hidden sector is an intriguing possibility, motivated by dark matter, RH neutrinos, SUSY breaking, ...
- Light degrees of freedom may interact with the SM at the renormalizable level via the vector, Higgs, and neutrino portals
- Sensitivity to these portals lies at the luminosity frontier, e.g. medium energy e⁺e⁻ machines (B-factories), rare decays, fixed targets, ...
- Significant sensitivity to a secluded U(1) from neutrino sources: LSND, MiniBooNE, NuMI/MINOS, T2K, NOvA, MicroBooNE, Project X,

